12 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Effect of Perioperative Lidocaine, Propofol and Steroids on Pulmonary Metastasis in a Murine Model of Breast Cancer Surgery

    No full text
    Addressing the hypothesis that anaesthetic-analgesic technique during cancer surgery might influence recurrence or metastatic spread is a research priority. Propofol, which has anti-inflammatory properties in vitro, is clinically associated with reduced risk of cancer recurrence compared with sevoflurane anaesthesia in retrospective studies. Amide local anaesthetics, such as lidocaine, have cancer inhibiting effects in vitro. Steroids have anti-inflammatory and immunosuppressive effects and are associated with improved recovery after major non-cancer surgery. We compared the effects of propofol, lidocaine and methylprednisolone on postoperative metastasis in a murine model of breast cancer surgery under sevoflurane anaesthesia. 4T1 tumour cells were introduced into the mammary fat-pad of female BALB/c mice and the resulting tumour resected seven days later under general anaesthesia with sevoflurane. Mice (n = 72) were randomized to four treatment groups: Sevoflurane alone (control); Propofol group received 5 mg.kg−1; Lidocaine group received 1.5 mg.kg−1 followed by 2 mg.kg−1.h−1 infusion; Methylprednisolone group received 30 mg.kg−1 methylprednisolone. The primary outcome measure was pulmonary metastasis colony count, as assessed by in-vitro proliferation, two weeks post-operatively. This was achieved by treating the post-mortem lung tissue with collagenase IV, straining and culturing for 14 days prior to colony count. Compared with control, lidocaine and propofol each individually reduced pulmonary metastasis colonies; mean (SD) 846 (±581) vs. 88 (±52) vs. 34 (±44) respectively, (p = 0.0001 and p = 0.0001). Methylprednisolone increased lung metastasis, 2555 (±609) vs. 846 (±581), p = 0.0001. Post-operative hepatic metastatic disease and serum interleukin-6 and vascular endothelial growth factor levels were similar in all groups. In conclusion, in a murine model of breast cancer surgery during sevoflurane anaesthesia, propofol and lidocaine each decreased pulmonary metastasis, while methylprednisolone increased it

    Identification of the Binding Domain of Streptococcus oralis Glyceraldehyde-3-Phosphate Dehydrogenase for Porphyromonas gingivalis Major Fimbriae▿

    No full text
    Porphyromonas gingivalis forms communities with antecedent oral biofilm constituent streptococci. P. gingivalis major fimbriae bind to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) present on the streptococcal surface, and this interaction plays an important role in P. gingivalis colonization. This study identified the binding domain of Streptococcus oralis GAPDH for P. gingivalis fimbriae. S. oralis recombinant GAPDH (rGAPDH) was digested with lysyl endopeptidase. Cleaved fragments of rGAPDH were applied to a reverse-phase high-pressure liquid chromatograph equipped with a C18 column. Each peak was collected; the binding activity toward P. gingivalis recombinant fimbrillin (rFimA) was analyzed with a biomolecular interaction analysis system. The fragment displaying the strongest binding activity was further digested with various proteinases, after which the binding activity of each fragment was measured. The amino acid sequence of each fragment was determined by direct sequencing, mass spectrometric analysis, and amino acid analysis. Amino acid residues 166 to 183 of S. oralis GAPDH exhibited the strongest binding activity toward rFimA; confocal laser scanning microscopy revealed that the synthetic peptide corresponding to amino acid residues 166 to 183 of S. oralis GAPDH (pep166-183, DNFGVVEGLMTTIHAYTG) inhibits S. oralis-P. gingivalis biofilm formation in a dose-dependent manner. Moreover, pep166-183 inhibited interbacterial biofilm formation by several oral streptococci and P. gingivalis strains with different types of FimA. These results indicate that the binding domain of S. oralis GAPDH for P. gingivalis fimbriae exists within the region encompassing amino acid residues 166 to 183 of GAPDH and that pep166-183 may be a potent inhibitor of P. gingivalis colonization in the oral cavity
    corecore